Time Series Forecasting from High-Dimensional Data with Multiple Adaptive Layers
نویسندگان
چکیده
This paper describes our work in learning online models that forecast real-valued variables in a high-dimensional space. A 3GB database was collected by sampling 421 real-valued sensors in a cement manufacturing plant, once every minute, for several months. The goal is to learn models that, every minute, forecast the values of all 421 sensors for the next hour. The underlying process is highly non-stationary: there are abrupt changes in sensor behavior (time-frame: minutes), semi-periodic behavior (time-frame: hours{days), and slow long-term drift in plant dynamics (timeframe: weeks{months). Therefore, the models need to adapt on-line as new data is received; all learning and prediction must occur in realtime (i.e., one minute). The learning methods must also deal with two forms of data corruption: large amounts of data are missing, and what is recorded is very noisy. We have developed a framework with multiple levels of adaptation in which several thousand incremental learning algorithms that adapt on-line are automatically evaluated (also on-line) to arrive at the "best" predictions. We present experimental results to show that by combining multiple learning methods, we can automatically learn good models for timeseries prediction without being provided with any physical models of the underlying dynamics.
منابع مشابه
Sales Budget Forecasting and Revision by Adaptive Network Fuzzy Base Inference System and Optimization Methods
The sales proceeds are the most important factors for keeping alive profitable companies. So sales and budget sales are considered as important parameters influencing all other decision variables in an organization. Therefore, poor forecasting can lead to great loses in organization caused by inaccurate and non-comprehensive production and human resource planning. In this research a coherent so...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملBased on Multiple Scales Forecasting Stock Price with a Hybrid Forecasting System
This paper presents an integration prediction method which is called a hybrid forecasting system based on multiple scales. In this method, the original data are decomposed into multiple layers by the wavelet transform and the multiple layers are divided into low-frequency, intermediate-frequency and high-frequency signal layers. Then autoregressive moving average models, Kalman filters and Back...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998